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Abstract The objective of this study was to criti-
cally review studies published up to November 2021
that investigated the presence of pesticides in surface
freshwater to answer three questions: (1) in which
countries were the studies conducted? (2) which pesti-
cides are most evaluated and detected? and (3) which
pesticides have the highest concentrations? Using the
Prisma protocol, 146 articles published from 1976 to
November 2021 were included in this analysis: 127
studies used grab sampling, 10 used passive sampling,
and 9 used both sampling techniques. In the 45-year
historical series, the USA, China, and Spain were the
countries that conducted the highest number of stud-
ies. Atrazine was the most evaluated pesticide (56%
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of the studies), detected in 43% of the studies using
grab sampling, and the most detected in passive sam-
pling studies (68%). The compounds with the high-
est maximum and mean concentrations in the grab
sampling were molinate (211.38 pg/L) and bentazone
(53 pg/L), respectively, and in passive sampling, they
were oxyfluorfen (16.8 ug/L) and atrazine (4.8 pg/L),
respectively. The levels found for atrazine, p,p’-DDD,
and heptachlor in Brazil were higher than the regu-
latory levels for superficial water in the country. The
concentrations exceeded the toxicological endpoint
for at least 11 pesticides, including atrazine (Daphnia
LCs, and fish NOAEC), cypermethrin (algae EC50,
Daphnia and fish LCs; fish NOAEC), and chlorpy-
rifos (Daphnia and fish LCs,; fish NOAEC). These
results can be used for planning pesticide monitoring
programs in surface freshwater, at regional and global
levels, and for establishing or updating water quality
regulations.

Keywords Surface freshwater - Pesticide
contamination - Herbicides - Insecticides -
Organochlorines - Organophosphates

Introduction
Pesticides are widely used in the management of pests
that affect agricultural quality and production (Mateo-

Sagasta et al., 2017), and their use has increased over the
years to meet the demand for food and other products
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for a growing population (FAO, 2020a). Currently, more
than 1680 substances, active ingredients and metabo-
lites, are included in the Pesticides Properties DataBase
(PPDB, 2021). These are substances classified into dif-
ferent classes (e.g., herbicide, insecticide, and fungicide),
chemical groups (e.g., organochlorines, organophos-
phates, and triazines), and modes of action (e.g., acetyl-
cholinesterase enzyme and photosystem inhibition).

Despite the benefits of using pesticides in agricul-
ture, these compounds are potential contaminants of
surface freshwater (Caldas, 2019; Pirsaheb et al., 2017,
Souza et al., 2020). Rockstrom et al. (2009) described
chemical water pollution as one of the axes of the plan-
etary boundary that is not yet quantified, and its dam-
age to aquatic organisms and humans is still not totally
understood. Environmentally sound management and
a significant reduction in the release of chemical sub-
stances into water by 2020, such as pesticides, were
also two of the goals of the 12th United Nations Sus-
tainable Development Targets (UN, 2016). Therefore,
efforts to assess the panorama of pesticides in surface
freshwater at local and global scales are important.

Some review studies demonstrated the presence of
pesticides in freshwater, from trace levels to high concen-
trations. Pirsaheb et al. (2017) focused on organochlorine
and organophosphate chemical groups and restricted
the study to the period 2000 to 2015, while Souza et al.
(2020) analyzed studies published from 2012 to 2019.
However, a review that covers all pesticides, without
restriction of period, is important to understand the pano-
rama of water contamination by these pollutants and the
evolution of the problem in recent decades.

The objective of this study was to critically review
studies on pesticides in surface freshwater. The study
covered works published until November 2021, of all
types and chemical groups of pesticides, to answer
three questions: (1) in which countries were studies
that analyze pesticides in surface freshwater con-
ducted? (2) which pesticides are most evaluated and
detected by the studies? and (3) which pesticides have
the highest concentrations?

Methods
The Prisma protocol, used to prepare a systematic

review and meta-analysis, was followed in this critical
review in order to reduce the risk of bias and ensure

@ Springer

study quality (Mobher et al., 2015). Descriptors related
to pesticides inserted into the search string were:
{((pesticide* OR metabolite* OR agrochemical* OR
agrichemical) AND detect*)} AND {(((surface AND
freshwater* OR river* OR lake*) AND contami-
nant*) AND NOT soil*)}. Searches were performed
in the ScienceDirect, Scopus, and Web of Science
databases, focusing on titles, abstracts, and key-
words, and include papers published up to November
08, 2021. Additionally, papers that escaped from the
database search but were mentioned in some studies
were also included.

Eligibility criteria

For inclusion criteria, were considered studies (1)
published in peer-reviewed scientific journals, (2) in
English, (3) about pesticides in surface freshwater, (4)
cited the sampling environment and pesticide analysis
technique, (5) generated analytical data, and (6) con-
tained the names and the concentrations of the inves-
tigated pesticides. Exclusion criteria were studies that
(1) were not original research (reviews, meta-analysis,
letters, etc.), (2) had data from another study already
included, (3) presented data for the sum of pesticide
concentrations, and (4) showed data that were in non-
comparable units and/or only displayed in graphs.

Study selection and data collection process

Two independent reviewers selected the publications
based on information contained in titles and abstracts
and considering the eligibility criteria. When there
were disagreements regarding the inclusion or exclu-
sion of a study, the reviewers evaluated the work and
decided together. The studies included were fully read
to verify if they met the eligibility criteria.

After assessing compliance with the eligibility
criteria, the following information was extracted: (1)
authors and year of publication; (2) country and/or
region where the study was conducted; (3) landscape
from the surrounding area to the sampling locations;
(4) type of water body monitored; (5) sampling tech-
nique performed in the study (grab or passive); (6)
pesticides evaluated and concentrations detected; (7)
analysis technique and method limit of quantification
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(LOQ), maximum detection limit (MDL) and/or limit
of detection (LOD).

Data analysis

The name of each substance (pesticide and/or its
metabolite) was first standardized according to the
Pesticides Properties Data Base (PPDB, 2021), and,
when the name was not found, the PubChem (2021)
database was used. The included studies were sepa-
rated into two groups, according to the sampling
technique: grab and passive sampling. Grab sampling
consists of carrying out the sample collection at an
episodic moment in time, while passive sampling
makes use of devices, called passive samplers, which
are installed in the environment for a period, usually
days, and makes up for the loss of occasional events
of pollution and the variation of pollutants over time
(Vrana et al., 2005).

The collected data were tabulated and analyzed
using Excel software. Concentrations extracted from the
studies and the LOD/MDL/LOQ of the methods were
standardized in micrograms per liter. The number of
studies conducted per country and by region was plot-
ted on a map using Google Earth and QGis software.

Fig. 1 Flowchart for select-
ing the studies that analyzed
pesticides in surface water
published up to November

Studies identified in the research databases:

The number of studies in which each pesticide
was evaluated, and the number of studies in which it
was detected at least once was counted. Concentra-
tion values equal to or above the LOD/MDL or LOQ
were considered, as reported in the study. Pesticides
with the highest concentrations were identified for
both sampling techniques, considering the maxi-
mum and mean concentrations reported in the stud-
ies. The highest concentrations found were compared
with regulations on pesticides in surface freshwa-
ter and ecotoxicological endpoints for aquatic biota,
according to data availability.

Results and discussion

Selection process and study distribution around the
world

The search returned 941 publications (Fig. 1). With
the removal of duplicates and selection of articles
according to eligibility criteria, 146 studies remained
in this revision, the oldest published in 1976:
127 studies used grab sampling, 10 studies used

IDENTIFICATION

Studies not identified in the search:

08, 2021 Web of science: 532 10
Science direct: 208
Scopus: 191
Total: 941
SCREENING

Studies after removing duplicates: 814

Studies excluded after reading the title and abstract: 531
ELIGIBILITY

Studies evaluated for eligibility after full-text reading: 283

Studies excluded due to ineligibility: 137
INCLUDED

Studies included in this review: 146
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passive sampling, and 9 studies used grab and passive
samplings.

The 146 studies were conducted in 48 countries,
mainly the USA (30), China (19), and Spain (16)
(Fig. 2). Detailed information of each study is avail-
able in Table 1 and in the Supplementary Material
(Tables S1 and S2). The studies conducted in the USA

37 Spain
Studies in 8 provinces
Tarragona: 5 studies

1°USA
Studies in 38 states

California and South
Carolina: 5 studies

Number of studies per country

1: Austria, Belgium. Bosnia and Herzegovina, Bulgaria,
Cameroon. Denmark, Egypt. Estonia. Finland, Ghana,
Hungary, Iran, Japan, Kazakhstan, Kenva, Latvia, Lebanon,
Lithuania, Luxemburg, Macedonia, Malta, New Zealand,
Nigeria, Republic of Cyprus. Saudi Arabia. Scotland. Serbia,
Singapore, Slovakia, South Africa, South Korea. South Sudan,
Sudan. Switzerland, Tanzania, Thailand and Ukraine

2: Argentina, Australia, Chile, Croatia, Greece, India, Ireland,
Poland, Romania, Slovenia, Sweden, Turkey and Vietnam

3: Netherlands

4: France, Germany. Italy, Malaysia and Portugal
10: Canada

11: Brazil

16: Spain

19: China

30: United States

included several regions of the country and were car-
ried out mainly by institutional agencies such as the US
Geological Survey (USGS), Environmental Protection
Agency (EPA), and California Department of Pesti-
cide Regulation (Bai et al., 2018; Bradley et al., 2019;
Bradley et al., 2017a, b; Elliott et al., 2017; Elliott
& VanderMeulen, 2017; Ensminger et al., 2013),
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Fig. 2 (A) World distribution of the 146 studies published from 1976 to 2021 that investigated the occurrence of pesticides in sur-

face freshwater. (B) Distribution of the 43 studies conducted in Europe
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Table 1 General characteristics of the 146 studies included in this review that investigated the occurrence of pesticides in surface

freshwater in the world, listed according to the publication year. G, grab sampling; P, passive sampling

Highest concentration Environment Landscape Country Reference
[max.] and (mean), ug/L
G: tolylfluanid [201,56] River Agriculture, urban areas, Croatia Malev et al. (2022)
and industry
G: diuron [1.37] Rivers Agriculture, urban area, Ukraine Nikolopoulou et al.
and industry (2022)
G: 8-HCH [0.026] and River and spring water  Agriculture China Huang et al. (2021)
o,p’-DDD (0.002)
G: bentazone [180] and Channels Agriculture and Spain Barbieri et al. (2021)
53) chemical industries
G: metolachlor SA [0.09] River and creeks Agriculture, pasture, USA Thompson et al. (2021)
forests, and developed
G: malathion [0.535] Rivers and streams Urban area Brazil Rico et al. (2021)
G molinate [211.38] and  River and creeks Agriculture, big urban Turkey Emadian et al. (2021)
(15.56) regions, and industries
G: metolachlor ESA River® n.i Canada Picard et al. (2021)
[0.08]
G: imazethapyr [0.58] Lake Agriculture, urban Brazil Perin et al. (2021)
areas, industries, and
livestock
G: MCPA [23.7] and Streams Agriculture and pasture  France Le Cor et al. (2021)
flufenacet ESA (1)
G: metazachlor ESA [3] River Agriculture, urban area, Italy Carere et al. (2021)
industry, and forest
G:24-D [1.2] Creeks Urban area USA Cavallin et al. (2021)
G: aldrin (1.15) River Agriculture, urban area, Portugal Paiga et al. (2021)
and livestock
G: carbendazim [0.02] River Agriculture, urban area, China Liu et al. (2021)
and forests
G: bentazone [63.1] Rivers and creeks Agriculture and urban USA Bradley et al. (2021)
area
G: thiabendazole [<MDL] Reservoir n.i China Zhang et al. (2021a, b)
G: atrazine [38] River and creeks Agriculture, urban area, USA Smalling et al. (2021)
pasture, and forest
G: heptachlor [0.04] and  Lake Agriculture and industry China Cao et al. (2021)
f-HCH (0.02)
G: 2,6-dichlorobenzamide River Urban area Sweden Golovko et al. (2021)
[0.06]
G: dichlorvos (0.04) River Urban area China Zhang et al. (2021)
G: atrazine [0.3] Rivers and creeks Park USA Bradley et al. (2020)
P: atrazine [4.1] and Rivers, lakes, channel, Agriculture, urban area, USA Alvarez et al. (2021)
(0.35) and creeks and pasture
G: atrazine [0.3] Streams Agriculture, urban area, USA Guardian et al. (2021)
and pasture
G: carbendazim [0.17] Lakes and river Agriculture and urban Vietnan Wan et al. (2021)
area
P: p,p’-DDE [0.00007] Lake and creeks Urban area and Canada Zhang et al. (2020)
industries
G: bentazone [0.18] Lake and river Agriculture, urban area, China Meng et al. (2020)

and industry
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Table 1 (continued)

Highest concentration Environment Landscape Country Reference

[max.] and (mean), pg/L

G: metolachlor [3.8] Rivers and chaneel Agriculture, urban area, USA Battaglin et al. (2020)
and industry

G: imidacloprid [0.41] River Agriculture Japan Hashimoto et al. (2020)

G: dieldrin [0.37] River and reservoir Agriculture, wetlands, Kazakhstan Snow et al. (2020)

P: atrazine (0.001) and pasture

G: hexazinone [1.5] Lake Agriculture, urban area, Kenya Kandie et al. (2020)
industry, and grassland

G:nd River Urban area Brazil Huelsmann et al. (2020)

G:nd River Agriculture and urban Brazil Cancillier et al. (2020)
area

G: a-HCH [0.013] River Agriculture and China Liu et al. (2020)

P: a-HCH (0.007) livestock

G:nd Lake and channek n.i Turkey Turan et al. (2020)

G: diazinon [0.25] River Urban area, agriculture, Malaysia Zainuddin et al. (2020)
industry, and mineral

G: acetamiprid [0.034] River and creek Urban area China Lu et al. (2020)

and (0.02)
G: glyphosate [4.8] and Streams Agriculture, urban area, Australia Okada et al. (2020)
AMPA (1.6) industry, grassland,

forest, and park

G: propoxur (0.85) River Agriculture and urban Brazil Gongalves et al. (2020)

G: diazinon [1.01] and
0.14)

P: diazinon [0.05]
G: atrazine [76.8]

G: tebuconazole [0.45]
P: diuron [1]

G: glyphosate [3] and
0.1)

G: a-HCH (0.2)
G:2,4-D (0.2)

P: 2,4-D (0.07)

G: terbutryn [0.43]

G: carbendazim [0.15]

G: imidacloprid [0.15] and

(0.08)
G:n.d

G: prometryn [0.03]

P: prometryn (0.05)

G: carbendazim [16.84]
and (4.84)

G: thiamethoxam [0.27]

and imidacloprid (0.006)

Lakes and channels

River

River and creeks

Rivers and streams

Rivers

River

Streams

Rivers and stream

River and channel

River

River
River

Rivers

River

area

Agriculture, urban area,
and industries

Agriculture, urban areas,
and industries

Agriculture, urban areas,
forests, and grass

Agriculture, urban areas,
forested areas, and
grasslands

Agriculture, urban area,
forest, and forestry

Agriculture, urban area,
and industry

Agriculture, pasture, and
native bush

Agriculture, urban area,
and industry

Urban area

Urban area

n.i

Urban area

Agriculture, urban area,
industry, and mining

Agriculture and urban
area

Saudi Arabia
Bosnia and Herzegovina
USA

Spain

Canada
Nigeria

New Zealand
Spain

Thailand
China

Brazil
China

Spain

China

Picé et al. (2020)
Tousova et al. (2019)
Cipoletti et al. (2019)

Rico et al. (2019)

Montiel-Léon et al.
(2019)

Ogbeide et al. (2019)

Hageman et al. (2019)

Rubirola et al. (2019)

Juksu et al. (2019)
Yi et al. (2019)

Silva et al. (2019)
Gao et al. (2019)

Quintana et al. (2019)

Mabhai et al. (2019)
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Table 1 (continued)

Highest concentration Environment Landscape Country Reference
[max.] and (mean), pg/L
G: imidacloprid [0.16] Rivers® Agriculture, urban area, China Zhang et al. (2019)
industry, livestock, and
poultry
G: imidacloprid (0.016) Rivers Agriculture, urban Spain Borrull et al. (2019)
region, and industries
G: 2,4,5-trichloro-6- Creeks Agriculture, pasture, USA Bradley et al. (2019)
hydroxybenzene-1,3- urban region, and
dicarbonitrile [39.18] forest
G:nd River n.i Iran Chahkandi et al. (2019)
P: oxyfluorfen [16.8] Rivers, streams, and Agriculture Brazil Valenzuela et al. (2019)
lakes
G: quinoxyfen [0.006] Rivers® Agriculture, urban Ireland Jones et al. (2019)
region, and industries
G: triallate [0.5] Rivers® Agriculture, pasture, Portugal Sousa et al. (2019)
urban region, and
industries
G: diazinon [<0.00001] River® Urban region Malasyan Wee et al. (2019)
G: bentazone [0.85] and Rivers and channel n.i China Xu et al. (2019)
0.23)
G: chlorpyrifos and Rivers* Agriculture, urban area,  Australia Scott et al. (2018)
2-phenylphenol [<0.01] and park
P: atrazine (0.5) River Agriculture and urban Canada Challis et al. (2018)
area
P: atrazine (0.14) River Agriculture and urban USA Penland et al. (2018)
area
G: 2-Phenylphenol [0.04]  River, lake, and Agriculture, urban area, Serbia Skrbié et al. (2018)
and (0.04) channel and industry
G: acephate [4.47] and River® Agriculture and urban China Sun et al. (2018)
(1.67) area
G: thiamethoxam [0.06] Wetland Agriculture USA Williams and Sweetman
and imidacloprid (0.01) (2019)
G: triclopyr [5.2] Rivers and creeks Agriculture, urban USA Bai et al. (2018)
region, industries,
forests, recreation
parks, and golf courses
P: atrazine (1.25) Rivers, lake,” and creek Agriculture and urban Canada Challis et al. (2018, b)
region
G: bromacil [0.02] Dam catchment and Agriculture, urban South Africa Rimayi et al. (2018)
rivers® region, and industries
G: thiacloprid (0.76) Rivers® Agriculture, urban Portugal Barbosa et al. (2018)
region, and industries
G: malathion [0.94] River Agriculture and Brazil Berton et al. (2018)
vegetation native
G: diuron [13.9] and Rivers Agriculture, urban Cameroon Branchet et al. (2018)
(1.63) regions, industries, and
P: diuron [0.37] and (0.21) forests
G: hydroxyatrazine [9.7]  River Agriculture, urban China Brauns et al. (2018)

region, and industry

@ Springer
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Table 1 (continued)

Highest concentration Environment Landscape Country Reference
[max.] and (mean), pg/L
G: carbendazim [0.12] Streams and river® Industry Germany Merel et al. (2018)
G: terbuthylazine [0.002]  Stream and lake Glaciers Italy Ferrario et al. (2017)
G: B-Endosulfan [0.004]  Tributaries and Urban area and industry ~ Singapore Wang and Kelly (2017)
channels
G: phorate sulfoxide River n.i India Asati et al. (2017)
(38.9)
G: 2,4-D [0.8] and (0.2) Rivers Agriculture, urban Brazil Bianchi et al. (2017)
region, and industries
G: simazine [3.14] Rivers, creeks, lakes, Agriculture, urban USA Elliot and VanderMeulen
and streams region, industry, (2017)
pasture, forest,
wetland, and grassland
G: pentachlorophenol Rivers and creeks Agriculture, urban USA Bradley et al. (2017a)
[0.2] region, forest, and
wetland
G: 3,4-dichloroaniline Rivers, creeks, canals, Agriculture, urban USA Bradley et al. (2017b)
[80.02] swamp, dam, lakes, regions, pasture,
and sloughs forests, shrubs, and
wetlands
G: metolachlor [1.53] Rivers, lakes, creeks, Agriculture, urban USA Elliot et al. (2017)
and channel region, animal feeding
operations, forest, and
wetland
G: permethrin (0.94) Creeks Urban region USA Liao et al. (2017)
P: deltamethrin (0.02)
G: desphenyl-chloridazon Rivers® Agriculture, urban Germany Seitz and Winzenbacher
[0.42] and (0.37) region, and industries (2017)
G: molinate [0.55] Rivers Agriculture, urban Macedonia Stipanicev et al. (2017)
region, factories,
industries, and mining
P: chlorpyrifos [0.12] and Lake and river Agriculture and urban Lebanon Aisha et al. (2017)
diazinon (0.05) region
G: chlorotoluron (0.02) River? Agriculture and urban Scotland Zhang et al. (2016)
P: chlorotoluron (0.01) area
G: simazine [0.46] Creeks and river Agriculture, forests, and USA Hapke et al. (2016)
P: 2,4-D (0.25) bare rock
G: aclonifen [0.01] Rivers n.i Romania Tancu et al. (2016)
G: chlorpyrifos (0.07) Rivers® Agriculture, urban Malaysia Wee et al. (2016)
region, industries,
mining, forest, and
poultry farm
G: metolachlor [0.44] Creeks Agriculture, pasture, and USA Fairbairn et al. (2016)
urban region
G: atrazine [0.004] River Agriculture, urban Slovenia Korosa et al. (2016)
region, and forest
G: heptachlor epoxide River Agriculture and urban Sudan and South Sudan  Nesser et al. (2016)
[1.57] and (0.67) region
G: atrazine (0.16) Rivers Agriculture, urban France Camilleri et al. (2015)
region, and forest
G:nd Rivers and channel Agriculture and urban Spain Luque-Espinar et al.

region

(2015)

@ Springer
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Table 1 (continued)

Highest concentration Environment Landscape Country Reference

[max.] and (mean), pg/L

G: chloridazon-desphenyl  Rivers Agriculture and urban Switzerland Moschet et al. (2014)

[2.2] regions

G: chlorpyrifos (0.02) River® Agriculture, urban Spain Pintado-Herrera et al.
region, industries, and (2014)
park

G: p,p’-DDE [0.02] Lake Agriculture and urban China Zhang et al. (2014)
region

G: dimethoate [5.17] and  Rivers and reservoirs®  Agriculture, urban Spain Robles-Molina et al.

prometon (4.1)
G: chlorpyrifos [0.04]

G: a-HCH [0.004] and
(0.003)

G: endosulfan sulfate
[0.03]

G: simazine [2]
G: diuron [17.6]
P: atrazine (4.8)
G: carbaryl [0.09]
G: AMPA [2.28]

G: y-HCH [0.025]

G: endosulfan sulfate
[0.004]

G: clopyralid [3.5]

G: diazinon [0.27] and
(0.09)

P: endosulfan sulfate
[0.0006]

G: 21 pesticides [<LOD]

G: diazinon [0.15] and
MCPA (0.1)

G: atrazine [0.2]
G: aldrin [0.16]

G: diuron [0.06]

G: MCPA [0.38] and (0.1)

G: isoproturon [0.3] and
(0.16)

G: endrin [0.28] and
(0.04)

G: atrazine [7.3]

Rivers and tributaries

Rivers

Rivers

Rivers®

Creeks®

River

Rivers

Rivers, channel, intake,
and sluice

Rivers

River

Reservoir and rivers

River

Lakes

Ponds, ditches, and
canals

River

Creeks

Rivers

Rivers

Rivers
River*

River

Rivers

region, and industries
Agriculture and industry

Agriculture, urban area,
industry, and livestock

Urban region

n.i

Urban region
Agriculture
Agriculture and forests

Agriculture, urban
region, industry, stock
farming, and nature

Agriculture, urban area,
and forest

Agriculture

Agriculture, urban
region, and industries

Agriculture, urban area,
and industry

Agriculture, forest, and
park

Agriculture

Agriculture and urban
area

Agriculture and pasture

Agriculture

Agriculture, urban
region, and industries

n.i

Agriculture and urban
region

Agriculture, urban
region, industry, and
wetland

Agriculture, urban
region, pasture,
wetland, and forests

South Korea

Tanzania
Spain
USA
USA
USA
Chile
Netherlands
Malaysia
Argentina
China
Spain
USA
Vietnan
Spain

USA

Brazil
Spain

Spain
Greece

Poland

USA

(2014)
Lee et al. (2014)

Hellar-Kihampa et al.
(2013)

Nallanthigal et al. (2013)

Anumol et al. (2013)
Ensminger et al. (2013)
Knight et al. (2013)
Retamal et al. (2013)
Houtman et al. (2013)

Santhi and Mustafa,
(2013)

Schreiber et al. (2013)

Wolf et al. (2013)

Gomez et al. (2012)

Mast et al. (2012)

Hoai et al. (2011)

Calderén-Preciado et al.
(2011)

Sellin et al. (2011)

Bedendo and Carasek
(2010)

Bueno et al. (2010)

Matamoros et al. (2010)
Stamatis et al. (2010)

Tomza-Marciniak and
Witczak (2010)

Kolpin et al. (2010)
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Table 1 (continued)

Highest concentration Environment Landscape Country Reference
[max.] and (mean), pg/L
G: o-HCH [26.8] River Agriculture, urban India Najam et al. (2010)

G: isoproturon [1.96] and
(0.05)

G: atrazine [2.1]
G: desethylatrazine [0.48]

G: y-HCH [1.61] and
(0.07)

G: atrazine [0.17]

G:n.d

G: parathion-methyl
[0.13]

G: 0o,p'-DDT [0.16] and
p-p"-DDE (0.05)
G:nd

G: aldrin [0.11]
G: atrazine (0.09)

G: atrazine [0.08]
G: molinate [0.36]
G: p-HCH [0.0001]

G: heptachlor [57.8]
G: atrazine [0.05]

G: mecoprop and
dichlorprop [0.1]

G: 2,4,6 trichlorophenol
[0.04]

G: p,p’-DDT [0.02] and
(0.005)
G: atrazine [0.8]

G: aldicarb sulfoxide
[10.9]

G: hexachlorobenzene
[0.03]

G: atrazine [42]

Rivers and creeks
River and creek?®
Rivers

Lake

River

Lake

Creeks®
Reservoir

River

River®

River

Rivers®
River
River?

River
River
Canals, river, and lake
River
River

Rivers®
River®

River

Rivers, reservoirs,
creek, lake, and
pond?

region, and industry

n.i

Agriculture, urban
region, and forests
Agriculture and urban

region

Agriculture

Agriculture, urban area,
and industry

n.i

Agriculture, urban
region, pasture, and
forests

Agriculture, urban
region, and industries

Agriculture, forestry,
and rocks

Agriculture, urban
region, and industry

Agriculture and urban
region

Agriculture and industry

Agriculture

Agriculture, urban
region, and industry

Agriculture and urban
regions

Agriculture and urban
region

n.i

Agriculture and industry

Agriculture and industry

Agriculture

Agriculture and urban
region

Industry

Agriculture and urban
region

Union European
USA
Canada
Ghana
Spain
China
USA
China
Chile
Spain
Canada

Netherlands
Italy
Egypt

Brazil
Canada
Germany
Canada
Argentina

France
USA

Canada and USA

USA

Loos et al. (2009)
Alvarez et al. (2009)
Garcia-Ac et al. (2009)
Darko et al. (2008)
Gomez-Gutiérrez et al.
(2006)
Xiao et al. (2006)
Barber et al. (2006)
Xue and Xu (2006)
Barra et al. (2005)
Brossa et al. (2005)

Sabik et al. (2003)

van Stee et al. (2002)
Agradi et al. (2000)
Yamasbhita et al. (2000)

Aratjo et al. (1998)
Sabik and Jeannot (1998)
Heberer et al. (1998)
McCarthy et al. (1997)
Janniot et al. (1994)

Legrand et al. (1991)
Foran et al. (1986)

Kauss and Hamdy (1985)

Junk et al. (1976)

n.i. not informed

2Environment: exclusion of one or more collection points due to the study classifying it in an environment other than freshwater or
the data being graphically displayed
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which demonstrated a strong government effort to
monitor pesticides in water. As one of the five coun-
tries with the largest export, import, and use of pes-
ticides in the world (FAO, 2020a, b), the USA is
extremely susceptible to the environmental impacts
arising from the use of these substances.

China is the largest exporter and user of pesticides
in the world (FAO, 2020a, b) and has the largest pop-
ulation on the planet (The World Bank, 2019). Since
the 2000s, China has been implementing agricul-
tural policies to guarantee food security and stabilize
prices (Gale, 2013). Indeed, the first study conducted
in the country that investigated the levels of pesticides
in freshwater retrieved in this review was published
in 2006, and in total, 19 studies were conducted up
to November 2021, indicating also a growing concern
over the impact of pesticide use on the environment.

Member countries of the European Union are
required to monitor water quality for priority sub-
stances and other pollutants, including pesticides,
but no concentration limits are established (European
Commission, 2008). A total of 43 studies were con-
ducted in the European region in surface water eligi-
ble for this critical review (Fig. 2B). Spain was the
country that most conducted these studies (16), fol-
lowed by Portugal, France, Italy, and Germany, with
four studies each (Table 1; Tables S1 and S2).

In South America, only Brazil, with 11 studies,
Argentine and Chile (2 studies each) had studies
included in this review, and 9 studies were conducted
on the African continent (Fig. 2). Analytical tech-
niques for pesticide detection involve complex and
expensive instruments that require specific training
for use and ongoing maintenance (Kot et al., 2000;
Ong et al., 2020), which may be limiting factors for
some developing countries, including in Central and
South American and Asian countries. It is interest-
ing to note that no studies conducted in Russia were
retrieved in this review, a developed country where,
in principle, technical limitations do not apply
(Fig. 2A).

General aspects of selected studies

The review covered a period of 45 years, and the
oldest study was conducted in the USA using grab
monitoring technique (Junk et al., 1976). This study
evaluated the levels of atrazine, DDE, the degradation
product of DDT (1,1'-(2,2,2-trichloroethane-1,1-diyl)

bis(4-chlorobenzene)), and dieldrin in water bodies in
Towa.

The USGS pioneered the development of passive
sampling techniques (USGS, 1999), and some stud-
ies describe these devices for use in surface water
(Alvarez, 2010; Brumbaugh et al., 2002). van Stee
et al. (2002) was the first study found during the arti-
cle search process that used a passive sampler (Semi-
permeable Membrane Device, SPMD); however, the
study was not included in this review because the
concentrations were expressed in non-comparable
units (ng/g fat). In addition to SPMD, the studies used
other passive sampling devices such as POCIS (Polar
Organic Chemical Integrative Sampler), o-DGT (dif-
fusive gradients in thin films for organics), and PU
(polyurethane film), with exposure from 4 to 460 days
in water (Table S2). Alvarez et al. (2009) used POCIS
and SPMD to evaluate various pesticides in the Poto-
mac River watershed, USA, and four other studies
using this technique were carried out in the country.

The use of grab sampling for water is widespread
and consolidated (CETESB, 2011; European Com-
mission, 2009); however, the chemical profile and
concentrations of contaminants are restricted to the
time of sampling, and the conditions between collec-
tions are unknown (European Commission, 2009). On
the other hand, passive sampling provides weighted
mean concentrations over the exposure time, which
covers the conditions of the entire sampled period
and eliminates extreme variations, such as fluctua-
tions in contaminants (Valenzuela et al., 2020). How-
ever, these devices still have some limitations, includ-
ing the effects of environmental conditions on analyte
absorption; low sampling rate, which requires longer
sampling time for lower concentrations (Namie$nik
et al.,, 2005); and device theft. Additionally, some
require complex mathematical models to calculate
the sampling rate (Valenzuela et al., 2020). Thus, the
two techniques are not mutually exclusive, but com-
plementary. In Europe, for example, passive sam-
pling is used as a method complementary to grab
sampling (European Commission, 2009), and 9 stud-
ies included in this review also used both methods
(Table 1).

Most studies were conducted close to agricultural
regions (Table 1), an activity identified as the main
source of pesticide contamination in water (WHO,
2016). However, some studies also evaluated pesti-
cides in urban regions (Table 1), such as Liao et al.
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(2017), who investigated insecticides for urban use
and Wee et al. (2019), who focused on endocrine dis-
ruptors in urban rivers.

Rivers were the most monitored water bodies,
although it must be noted that terms that describe
lower order water bodies, such as streams, were not
included in the search string. The European water
quality directive, for example, suggests monitor-
ing points in large rivers, because they are strategic
environments for checking the state of a hydrographic
basin (European Commission, 2000). In any case, the
monitoring of water bodies of various orders in the
hydrographic basin is important.

Pesticides evaluated and detected by studies on
surface freshwater

The improvement of chromatography, with the devel-
opment of new equipment and techniques from the
1960s onwards, allowed advances in the analysis of
pesticides, with more sensitive and specific detectors,
such as the mass spectrometer (MS), and made it pos-
sible to measure concentrations in the order of ng and
pg (Solomon & Stephenson, 2010). Tables S1 and S2
show the analytical methods used in the studies and the
reported LOD/MDL and/or LOQ. All studies included
in this review used chromatographic methods for ana-
lyte separation. While non-polar and thermostable
compounds, such as organochlorines and pyrethroids,
are more easily evaluated by gas chromatograph (GC)
techniques, (Ibafiez et al., 2008; Wille et al., 2012),
more polar and thermolabile molecules are preferen-
tially analyzed by liquid chromatography (LC) (Ibafez
et al., 2008). GC was the equipment used in most stud-
ies, and tandem mass spectrometry (MS/MS) was the
most frequent detector, coupled with GC and/or with
LC; many studies used different equipment, including
high resolution (HR) GC or LC for screening before
quantitation. The lowest LOD reported in the studies
was 0.8 pg/L, obtained in UPLC-ESI-QqQ-MS/MS
equipment (ultra-performance liquid chromatography
equipped with an electrospray ion source coupled to
triple quadrupole tandem mass spectrometry).

A total of 1064 pesticides were evaluated in the
127 studies that used grab sampling, with the reported
number of samples collected varying from 2 to 370,
information that was not included in most studies
(Table S1). Almost half of the investigated pesticides
(636) were detected. The pesticides most evaluated

@ Springer

were atrazine (56%), simazine (46%), and chlorpyri-
fos (36%), and the most detected were atrazine (43%),
simazine (29%), metolachlor (28%), and imidacloprid
(28%) (Fig. 3A). Atrazine, simazine, chlorpyrifos, and
metolachlor were more evaluated and detected in the
USA (Table S1).

Nineteen studies were conducted using passive
samplers (Fig. 3B), mainly in regions with agricul-
tural proximity, with samples collected in South
and North America, Europe, Africa, Asia, and Oce-
ania, of which nine studies also used grab sampling
(Table S2). A total of 164 pesticides were investigated
in the 19 studies, with 5 to 460 passive samplers used
and 132 pesticides detected at least once. Chlorpyri-
fos (74%), atrazine (68%), and diazinon (63%) were
the most investigated compounds, while atrazine
(68%), simazine (42%), chlorpyrifos (42%), p,p’-DDD
(42%), and p,p’-DDE (42%) both DDT degradation
products, were the most detected (Fig. 3B), with per-
centages similar to those of grab sampling (Fig. 3A).

Atrazine is a selective and systemic herbicide of
the triazine group, used in the pre- and post-emergent
stages of many crops, mainly corn, soybean, wheat,
cotton, sorghum, and sugarcane (ANVISA, 2021;
PPDB, 2021; USGS, 2017). Atrazine degradation
products (desethyl and deisopropylatrazine) were also
detected in surface water samples (Fig. 3). In 2017,
the use of atrazine in the corn crop in the USA was
10,508 ton/km? (USGS, 2017). In Brazil, this herbi-
cide was the fifth highest-selling active ingredient,
with more than 23,000 tons sold in 2019 (IBAMA,
2020). In the European Union, the use of this herbi-
cide has been banned (European Commission, 2004),
but it is still monitored in food (European Commis-
sion, 2016) and in surface water (European Commis-
sion, 2008).

Simazine, another triazine herbicide, is also used
in the pre- and post-emergent stages in various crops,
including fruits, canola, chickpeas, beans, corn, sor-
ghum, and sugarcane (ANVISA, 2021; PPDB, 2021;
USGS, 2017). Metolachlor is a selective herbicide
of the chloroacetamide group, which inhibits the
synthesis of very long chain fatty acids in plant tis-
sue and can be used in various crops, including corn,
soybeans, sorghum, potatoes, cotton, and ornamental
plants (PPDB, 2021; USGS, 2017). Imidacloprid is
a systemic neonicotinoid insecticide used in various
crops, including rice, maize, cotton, sugar cane, and
various vegetables (PPDB, 2021; ANVISA, 2021).
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A - Grab Sampling (n=136 studies)

Studies (%)
L7 = L [=))
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L

[5%]
o
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B - Passive Sampling (n=19 studies)

Studies (%0)

B Evaluated MDetected

Fig. 3 Pesticides most evaluated and detected in the 146 studies (>LOD/MDL/LOQ) using (A) grab sampling and (B) passive sam-

pling as monitoring techniques

Several organophosphate insecticides were evalu-
ated and detected in the studies, including chlorpy-
rifos, diazinon, and malathion (Fig. 3). These com-
pounds are neurotoxic, acting as inhibitors of the
enzyme acetylcholinesterase (AChE) in mammals,
insects, and other organisms (Colovic et al., 2013).
Several persistent organochlorine pollutants (POPs)
were also detected in surface water samples, including
the insecticides lindane (y-HCH), DDT and its metab-
olite DDE, aldrin and dieldrin, and heptachlor and its

epoxide (Fig. 3). These compounds are no longer used
in agriculture in most countries or have restricted use,
but their chemical characteristics make them persistent
in the environment and susceptible to bioaccumulation
in ecosystems (Chopra et al., 2011). Aiming to reduce
and eliminate the release of these organochlorine pol-
lutants, and to safeguard human health and the envi-
ronment, the Stockholm Convention determined that
the signatory parties carry out national and interna-
tional research on these compounds (UN, 2001).
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Pesticide concentrations in the surface freshwater

It is important to note that, for both sampling tech-
niques, the most detected pesticides are not necessarily
those with highest concentrations (Tables S1 and S2;
Fig. 4). In general, the maximum and mean concentra-
tions of compounds detected in samples collected by
the grab monitoring technique were higher than those
found in passive sampling (Fig. 4), similar to what was
reported for some pesticides by Hapke et al. (2016). This
is expected due to the dilution factor of concentration
peaks that occurs during the passive sampling period.

A - Grab Sampling
Maximum

225 | TUR

USA ysa
USA ESP BRA

Concentration ng/L
&
wn

USA USA USA

0
FFE S RS
& N S O P & O x ~d
> & & S \ A
U SR P L SA L R
» F FE T FHF T v O
N < N
Q’\Q &
b( .Lnﬂ
5 s
&

C - Passive Sampling
Maximum

Concentration pg/L.

B Herbicide Insecticide

Fig. 4 The ten highest concentrations of pesticides or metabo-
lites found in the 146 studies according to the sampling tech-
nique: (A) grab sampling — maximum concentrations; (B)
grab sampling — mean concentrations; (C) passive sampling
— maximum concentrations; (D) passive sampling — mean
concentrations. Source: BRA: Brazil: Aradjo et al. (1998);
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The highest maximum and mean concentra-
tions detected using grab sampling were for moli-
nate (211.38 pg/L; Fig. 4A) and bentazone (53 pg/L;
Fig. 4B), found, respectively, in the Ergene River
hydrographic basin (Turkey; Emadian et al., 2021) and
in Fangay Bay, Ebro River (Spain; Barbieri et al., 2021)
(Table 1). For the passive sampling, the highest con-
centrations were for oxyfluorfen (16.8 ug/L; Fig. 4C)
and atrazine (4.8 pg/L; Fig. 4D), detected in the San
Francisco river basin (Brazil) and in the Elkhorn
river (USA) (Table 1; Knight et al., 2013; Valenzuela
et al., 2019). In all cases, the herbicides were detected

B - Grab Sampling

Mean
Sl
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=
e
=
=
8
=
@
“
=
=]
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=2 5
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=
2 4
2
= .
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g
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=]
8} 1 ~
CAN USA CAN USA USA
0
E S
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¥ @Q W & %é&
Q&QQ QQ
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Valenzuela et al. (2019); CAN: Canada: Challis et al. (2018a,
b); ESP: Spain: Barbieri et al. (2021); IND: India: Asati et al.
(2017); TUR: Turkey: Emadian et al. (2021) and USA: United
States: Alvarez et al. (2009, 2021); Bradley et al. (2021,
2017b); Cipoletti et al. (2019); Junk et al. (1976) and Knight
etal. (2013)
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Table 2 Pesticides for

Algae ECsy (72h)*  Daphnia 1.Cs, (48 h)*  Fish (LCs)® Fish (NOAEC)"

. . . Pesticide
which the highest maximum
or mean concentration Atrazine 68.02
(Fig. 4) is higher than the Chlorpyrifos 203.03
ecotoxicological parameter
(ug/L) Cypermethrin 0.08
Hexaconazole 0.5
Malathion 6371.78
LCj, lethal concentration, Maneb 0.229
ECy, effective Molinate 18,455.77
concentration, NOAEC Oxyfluorfen 507.17
non-obserYed adverse effect Propanil 458933
concentration )
Quinalphos 275.96
Norman (2022)
b 8-HCH 2.03
USEPA (2021)

30,031.17 2650 5
0.81 0.9 0.57
0.0006 0.195 0.051

10.96 2.44%
20.32 2.05 8.6
2.41 21 6.1
17,783.15 105 390
231.22 100 1.3
1678.35 1150 9.1
2.46 - -
1.39 0.0857% -

near agricultural areas, which are indeed the major
source of pesticide water contamination.

The European Commission (2020) established a
parametric value of 0.1 pg/L for water for human con-
sumption for any pesticide, except for organochlorine
compounds (0.03 pg/L), but no value is established
for surface water. Indian, Canadian, and USA regula-
tions also establish values for water for human con-
sumption (India, 2012; Canada, 2020, USEPA, 2018).
Brazilian regulation for maximum pesticide levels in
surface water depends on the water use (Brazil, 2005)
and includes heptachlor (0.01 or 0.03 pg/L), atrazine
(2 pg/L), and ZDDTs (0.002 or 1 pg/L). These lev-
els are much lower than the maximum concentrations
found in the many studies conducted in the country
(Fig. 4A, C). No regulation for pesticide in water was
found in Turkey, in which a study showed the highest
molinate concentration (Emadian et al., 2021).

The presence of pesticides and other chemicals in
water bodies can have an important impact on aquatic
organisms, reducing biodiversity and compromising the
functioning of ecosystems (Carvalho, 2017). Table 2
shows the pesticides from Fig. 4 for which the high-
est maximum or mean concentrations extrapolated at
least one ecotoxicological endpoint (ECs, and LCs, for
acute exposure and NOAEC for fish chronic exposure),
obtained from NORMAN (2022) and/or USEPA (2021).

Algae ECy, was extrapolated for atrazine (Fig. 4A;
76.8 pg/L) and cypermethrin (Fig. 4B; 6.24 pg/L) con-
centrations and Daphnia LCs for chlorpyrifos, cyper-
methrin, and quinalphos (Fig. 4B; 6.24 to 38.9 pg/L)
and 0-HCH (Fig. 4C; 1.65 pg/L). Fish LCs, was extrap-
olated for molinate (Fig. 4A; 211.4 pg/L); chlorpyrifos,
cypermethrin, malathion, and maneb (Fig. 4B; 6.24

to 38.9 pg/L); and hexaconazole (Fig. 4C; 11.4 pg/L).
Fish NOAEC was extrapolated for atrazine (Fig. 4A,
C; 76.8, 10.7 pg/L); chlorpyrifos, cypermethrin, mal-
athion, maneb, and propanil (Fig. 4B; 6.24 to 38.9
pg/L); and oxyfluorfen (Fig. 4C;16.8 pg/L).

This systematic review study has some limitations
that should be pointed out. One limitation is that some
publications may have been missed during the lit-
erature search, which was restricted to the previously
defined descriptors and did not include other types
of water bodies, such as streams and ponds. Another
limitation is that most studies that used grab sampling
did not report the number of samples collected, which
hampered the estimation of the incidence of positive
samples for each pesticide.

Conclusions

The USA, China, and Spain were the countries with
the largest number of studies on pesticides in sur-
face freshwater, and few economically less devel-
oped countries have also conducted studies, includ-
ing those with high agricultural activity. Atrazine
was the most evaluated and detected pesticide until
2021, and it is also among the compounds detected at
higher concentrations, in addition to molinate, benta-
zone, and oxyfluorfen, detected in samples collected
in the USA, Turkey, Spain, and Brazil. The levels of
atrazine, p,p-DDD and heptachlor were higher than
the legal maximum levels for surface water in Bra-
zil. The concentrations exceeded the ecotoxicological
endpoint for at least 11 pesticides, including atrazine,
cypermethrin, and chlorpyrifos.
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Regulations that establish maximum concentration
limits for pesticides in surface freshwater are limited
in the world, and they were only identified in Brazil.
Therefore, the results of this review can be used in
planning monitoring of surface freshwater quality, at
regional and global levels, and for implementing or
updating regulations on the subject, which are essen-
tial for the protection of aquatic ecosystems.

Future studies in this area should include the use
of landscape ecology tools to understand the dynam-
ics that occur in the watershed and the flow of pollut-
ing sources to water bodies, thus identifying priority
areas for water monitoring, including those for water
intake for human consumption.
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