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Medicines containing anabolic steroids are one of the main targets for counterfeiting worldwide, 
including Brazil. The aim of this work was to propose a method for discriminating original and 
counterfeit Durateston® ampoules by Fourier transform infrared spectroscopy (FTIR) followed 
by chemometric analysis. Ninety-six ampoules of Durateston®, 49 originals and 47 counterfeits, 
were analyzed by gas chromatography with mass spectrometry (GC-MS) and by FTIR. Principal 
component analysis was applied to the infrared spectra to detected different clusters, corresponding 
to original samples and different types of counterfeits. A partial least squares - discriminant 
analysis method was proposed to discriminate original samples from those counterfeits that were 
indistinguishable from the originals in the infrared analysis. A training subset comprised of one-
third of the available spectra was used to establish a suitable model that correctly discriminated 
all samples in the test subset, resulting in 0% of false positive or negative results and 100% of 
efficiency rate, sensitivity and specificity. In addition to the low cost of the infrared technique, 
the proposed method is fast, reliable and suitable to replace GC-MS methods used in Durateston® 
ampoule analyses to detect counterfeiting.
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Introduction

According to the World Health Organization (WHO), 
spurious/falsely-labeled/falsified/counterfeit medicines 
are those deliberately and fraudulently mislabeled with 
respect to their identity and/or source.1 Counterfeit 
medicines pose a significant health risk to their consumers, 
as they can cause treatment failure, toxic reactions, and 
even death.2,3 It is not possible to ascertain the actual 
incidence of counterfeiting worldwide and the only data 
available are estimates. These range from less than 1% 
of the medicine market in some developed countries with 
well-established control policies, to 30% in developing 
countries in Africa, Asia and some regions of Latin 
America.2-4 Up to 50% of medicines sold on the internet 
are counterfeit, mostly from companies with no declared 
physical address.2,3,5

Counterfeit medicines may include products with the 
correct active pharmaceutical ingredients (API) but at 

concentrations different from those stated on the label, 
with incorrect API, no API, or only a mixture of toxic 
substances.2,3 All therapeutic classes are potential targets 
for counterfeiting, and the most common worldwide 
are antibiotics, hormones and steroids, antihistaminics, 
antimalarials, analgesics, and those in the genitourinary 
and central nervous system therapeutic categories.2,3 A 
study conducted with data obtained from forensic reports 
issued by the Brazilian Federal Police (BFP) from 2007 to 
2010 showed that the main seized counterfeit medicines of 
declared national origin were those for erectile dysfunction 
(69%) and anabolic steroids (26%).6 Among the anabolic 
steroids, the most frequent was Durateston®, a Brazilian 
medicine currently manufactured by Aspen Pharma that 
accounted for 8.9% of all seizures and was the third most 
frequent counterfeit medicine overall (behind Viagra® and 
Cialis® only).6 A study conducted by our research group 
(not published) found that 11.9% of the 25,833 medicines 
of different origins seized by the BFP from 2006 to 2012 
were anabolic steroids, the second most prevalent class 
after medicines for erectile dysfunction. Approximately 
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10% of all medicines were counterfeits, with Durateston® 
the third most frequent.

Another study showed that 31.7% of the 3,537 
medicines seized by the BFP between 2006 and 2011 that 
declared to contain anabolic steroids were counterfeits, with 
48.6% not containing any API and 28.3% containing APIs 
different from those stated on their labels.7 The second most 
seized medicine of this dataset was Durateston® (N = 264), 
of which 69.7% were counterfeits (89 had no API and 57 
had only some of the four testosterone esters they should 
contain) (unpublished results).

Even though anabolic steroids are an important target for 
medicine counterfeiting, there are not many studies reporting 
the analysis of suspected medicines of this class. Those 
available relied mainly on gas or liquid chromatography 
analysis.8-12 Spectroscopic techniques such as Raman, near 
infrared, and Fourier transform infrared (FTIR), together with 
chemometric tools, are being successfully used to analyze 
suspected counterfeit medicines.13-19 They have the advantage 
of being less time-consuming than chromatographic 
methods, with little or no sample preparation.13-15,19 
However, to the best of our knowledge, only one work using 
spectroscopic methods to analyze anabolic steroid medicines 
has been published so far, describing the investigation of the 
composition of methandrostenolone-containing tablets by 
near infrared and Raman spectroscopy.20

The aim of this work was to develop a simple, 
fast, low-cost and reliable method for the detection of 
Durateston® counterfeits using FTIR and partial least 
squares - discriminant analysis (PLS-DA).

Experimental

Samples

A total of 96 ampoules of Durateston® were analyzed at 
the National Institute of Criminalistics (NIC) of the BFP in 
Brasilia, Federal District. Seventy-six ampoules were seized 
between 2009 to 2013 by the BFP in different regions of 
Brazil, mainly Foz do Iguaçu and other cities on the Parana 
State (border with Paraguay), 29 of which were originals and 
47 counterfeits. After being seized, the samples were stored 
at room temperature, and analyzed within the expiring date 
reported in the label. In order to account for batch-to-batch 
variability, 20 additional original ampoules from 8 different 
batch numbers were purchased at local pharmacies in Brasilia 
in March 2014, adding up to 49 original ampoules.

Fourier transform infrared

An IS10 FTIR Spectrometer (Nicolet Instrument Corp., 

Madison, USA) equipped with a DTGS detector (at room 
temperature) and an ATR (attenuated total reflectance) 
accessory with a single bounce diamond crystal was used 
for all experiments. Measurements were made with a single 
droplet of the ampoule content deposited directly on the 
ATR crystal, with no pressure applied to the droplet. Each 
spectrum consisted of 16 co-added scans measured at a 
resolution of 4 cm-1 in the 4000-650 cm-1 range. Spectra were 
collected and analyzed with OMNIC software, version 5.2.

After each measurement, the diamond crystal surface 
was cleaned with ethanol and dried. A spectrum preview 
was performed before adding a new sample to the diamond 
surface to ensure complete removal of the previous sample 
and the ethanol. Each spectrum yielded 6,949 variables 
(wavelengths).

Gas chromatography coupled with mass spectrometry 
(GC-MS)

All Durateston® ampoules were analyzed by GC-MS 
as a reference method, using a NIC screening method for 
forensic analysis of medicines and drugs. Analyses were 
qualitative and performed using a GC 6890N coupled with a 
MS 5973 Inert (Agilent Technologies, Palo Alto, CA, USA), 
with either Rxi-1MS (Restek Corporation, Bellefonte, 
PA, USA) or HP5-MS columns (Agilent Technologies). 
Samples were prepared by adding approximately five 
droplets of the sample to 1.0 mL of chloroform or methanol 
directly in a vial, which was homogenized and injected in 
the GC without further preparation. Results were analyzed 
with Enhanced MSD ChemStation D.02.00.275 (Agilent 
Technologies) and NIST MS Search 2.0 (distributed by 
Agilent Technologies).

Chemometrics

All data processing and modeling were performed using 
the Unscrambler X, v. 10.1 software (Camo software, Oslo).

Principal component analysis (PCA)

Principal component analysis (PCA) may be used as 
a first stage of chemometric processing, being applied 
as an exploratory data analysis tool, and for outlier 
detection.13,15,17 It reduces the number of variables by 
making linear orthogonal combinations of the original 
variables, called the principal components (PCs), which 
progressively explain the remaining variability in the 
data.13,15

In this study, PCA was performed with all available 
spectra for exploratory analysis. Preprocessing included 



Neves et al. 3Vol. 00, No. 00, 2016

baseline offset correction, first derivative smoothing 
(Savitzky-Golay, fourth order polynomial, 5 smoothing 
points) and data mean centering. The NIPALS algorithm was 
used for the principal components computation. A first PCA 
was performed using all variables in order to evaluate its 
loadings plot. Two spectral ranges (from 4000 to 3687 cm-1, 
and from 2716 to 1810 cm-1) could be excluded due to 
their insignificant influence (loadings values around zero) 
to explain the variance. A new PCA was then performed 
with the remaining variables and a full cross validation.

Partial least squares - discriminant analysis (PLS-DA)

Despite the discriminating tendencies that may be 
observed in the score plot, PCA cannot be used alone 
for classification or discrimination problems, for which 
supervised models such as partial least squares - discriminant 
analysis (PLS-DA) or soft independent modelling of class 
analogies (SIMCA) are more appropriated.17,20 PLS-DA 
is also based on the PCA decomposition, the difference 
being that the combinations of variables, called PLS 
factors or latent variables, are defined in such a way 
that the covariance of the instrumental data with the 
response variable (predefined classes) are maximized, 
leading to quantitative methods with low errors and high 
discrimination power between the different classes in 
discriminant analysis.13,15,18,20

PLS-DA is performed using binary coding, in which 
a dummy discrete response vector y is attributed to the 
data set, such as 0 for counterfeit samples and 1 for 
original samples.14,17,21,22 In the training stage, the method 
is trained to assign “membership values”, one for each 
class; a test sample is then assigned to a specific class if its 
y value surpasses a specific prediction threshold that may 
be estimated by establishing confidence limits for each 
sample classified.17,21,23 Therefore, estimated values in y 
are approximations of 0 or 1, and a good discrimination 
is obtained when the distributions of the estimated values 
belonging to classes 1 and 0 are not overlapped.22

In this study, PLS-DA was applied using the same 
spectral regions and pre-processing methods as with PCA. 
The number of latent variables for the model was defined 
using the smallest root mean squared error of cross-
validation (RMSECV) determined by full cross-validation 
(leave-one-out approach) in the training set. The outlier 
identification was performed based on the Hotelling T2 
and residuals Q, both considering the confidence level 
of 95%.23 The discrimination threshold for each class 
was defined as 0.5, and a confidence interval of 95% was 
estimated for each test sample. Validation was performed 
by an independent test set comprised of a significant part of 

all samples available for this study and the figures of merit 
false positive and negative rates, specificity, sensitivity and 
efficiency rate estimated according to Botelho et al.24

Results and Discussion

Sample composition

All ampoules were analyzed by FTIR and CG-MS 
as previously described. Some examples of counterfeit 
Durateston® seized by the BFP are shown in Figure 1. The 
declared Durateston® composition, found in the original 
products (OR), is testosterone propionate, decanoate, 
phenpropionate and isocaproate (Figure 2), with benzyl 
alcohol and peanut oil as excipients. The chemical analysis 
obtained for the OR products (four esters identified by 
GC-MS analysis, and the vegetable oils by FTIR) matched 
this formulation.

Three different counterfeit types were identified in 
the samples: those containing only the excipient benzyl 
benzoate (BB), those containing testosterone propionate 
and prasterone (TP-PR), and those containing only 
testosterone propionate (TP). A total of 178 spectra of the 
ampoules were obtained: 93 from original samples and 85 
from counterfeits (Table 1).

Chemical analysis for the BB category showed a single 
peak in the GC-MS chromatogram corresponding to benzyl 
benzoate, and a match for benzyl benzoate in the FTIR. 
The ampoules classified as TP-PR showed two peaks in 
the GC-MS, corresponding to testosterone propionate 
and prasterone (another steroidal hormone), and a match 
for propylene glycol in the FTIR. The TP was the most 
diverse category, with chromatograms of some samples 
showing one peak corresponding to testosterone propionate, 
and three or four others that yielded varying matches for 

Figure 1. Different ampoules of counterfeit Durateston® compared with 
an original ampoule (far left). Picture taken with transmitted light.
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different long-chain esters, such as allyl octanoate or allyl 
decanoate. Three ampoules in this category presented 
chromatograms that only exhibited the testosterone 
propionate peak. FTIR results of ampoules from the TP 
category were also dissimilar: samples not presenting the 
ester peaks had a match for propylene glycol, whereas 
the others had good matches for vegetable oils and for 
esters (allyl octanoate or methyl decanoate, whose spectra 
are very similar). Representative chromatograms of all 
categories are shown on Supplementary Information (SI, 
Figures S1 to S4).

Representative FTIR spectra of the four categories 
are shown in Figure 3. Spectra shown in Figure 3A (OR 
ampoules) and 3B (TP ampoules) are similar, given that 

the vegetable oils present in OR ampoules and in some TP, 
and the long chain esters present in TP have similar spectra. 
One difference between these spectra is the presence of 
a narrow band of 1677 cm-1, indicated by the arrow in 
Figure 3A, which is characteristic of 4-en, 3-one steroids, 
such as testosterone (Figure 2).25 This band, however, is 
not significant enough to be discriminated by the FTIR 
library search, which gave similar results for the spectra 
shown in Figures 3A and 3B. The large, narrow band at 
around 1740 cm-1, present in both the OR and TP spectra, is 
common to esters, and suffers mild dislocations according to 
the substituent group.26,27 The benzyl benzoate spectrum in 
Figure 3C stands out in relation to the others, mainly due to 
a band at around 720-680 cm-1 that refers to aromatic C−H 
bonds.26,27 The propylene glycol spectrum displayed in Figure 
3D is the most distinguishable of the group, mainly due to 
the large –OH band at around 3300 cm-1. 27

PCA

The PCA results for all the 178 spectra, after the 
exclusion of the two spectral regions (4000-3687 cm-1 
and 2716-1810 cm-1; Principal component analysis (PCA) 
section) are shown by the score plots of PC1 × PC2 
(Figure 4A) and PC1 × PC2 × PC3 (Figure 4B). No samples 
with simultaneous high leverage and high residual variance 
(outliers) were detected. The first two PCs describe 92% 
of the data variation, and allow a clear distinction to be 
made of three groups, based on their excipients. Group 1 
is comprised only of BB ampoules, group 2 of the TP-PR 
ampoules (whose excipient was propylene glycol) and 
TP ampoules which also contain propylene glycol, and 
group 3 containing the OR and the remaining TP ampoules 
(Figure 4A). By using 3 PCs (Figure 4B), it was possible to 
explain 97% of the total variance, and to fully separate the 
OR from the TP in group 3, although each was split into 
two subgroups. It was not possible, however, to separate 
TP-PR from those TP ampoules that contained propylene 

Figure 2. Testosterone esters: (A) propionate; (B) phenpropionate; (C) decanoate and (D) isocaproate. Numbers on (A) indicate the relevant carbons for 
FTIR spectra (Figure 3A).

Table 1. Number of ampoules and spectra and summary of the analysis 
results of the 96 Durateston® ampoules analyzed

Category
Number of ampoules 

and spectra
GC-MS and FTIR results

Original 

49 ampoules (27 with one 
spectrum each; 

22 with three spectra each), 
total of 93 spectra

contain the testosterone 
esters propionate, decanoate, 

phenpropionate and 
isocaproate, main excipient 

is a vegetable oil

BB

28 ampoules (16 with one 
spectrum each; 

12 with three spectra each), 
total of 52 spectra

contain only benzyl 
benzoate, no API

TP-PR 1 ampoule with 3 spectra

contain testosterone 
propionate and prasterone, 

main excipient is 
propylene glycol

TP

18 ampoules (12 with one 
spectrum each; 

6 with three spectra each), 
total of 30 spectra

contain testosterone 
propionate and no other 

API, main excipient is either 
a vegetable oil, an ester 

(such as allyl octanoate) or 
propylene glycol

OR: original product; TP: only testosterone propionate; TP-PR: 
testosterone propionate and prasterone; BB: only the incipient benzyl 
benzoate; API: active pharmaceutical ingredient.
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glycol in group 2 (Table 1). Loadings plots for the three 
PCs are displayed as Supplementary Information. These 
plots highlight that PC1 is responsible for separating BB 
ampoules from the rest (high loadings values at the 700 cm-1 
region, corresponding to the strong band of aromatic C−H 
bonds as shown in Figure 3C) (SI, Figure S5). PC2 is 
responsible for separating samples containing propylene 
glycol from those with vegetable oils; its loading plots 
show several relevant regions around 2900, 1700 and a 
larger area from 800-1160 cm-1 (SI, Figure S6). Loadings 
plots for PC3 (SI, Figure S7) have a significant region from 
1690-1750 cm-1, corresponding to the carbonyl groups from 
esters and to 4-en, 3-one steroids, illustrating that the third 
PC is responsible for differentiation based on API contents.

Further analyses of the subgroups formed by the 
OR and TP categories (Figure 4B) showed that OR 
ampoules were subgrouped based on their “age”. One 
of the subgroups (PC3 values around 2) was comprised 
of the new ampoules, purchased in 2014, and the other 
(PC3 values around −1 to 0) of ampoules seized by the 
BFP in 2009-2010. The difference in the spectral profile 
may be due to some variation in the formulation or in the 
manufacturing process, or even due to some small changes 

on the FTIR performance, since analysis were conducted 
within a five-year period. However, no clear explanation 
could be found for the two subgroups in the TP group. 
They might reflect two different illegal manufacturers, 
poor manufacturing practices inherent to counterfeit 
products, or differences in the API concentration. Since 
no quantitative analyses were performed, these hypotheses 
could not be verified.

As can be seen in the score plots (Figure 4), ampoules 
with benzyl benzoate (BB) or propylene glycol (TP-PR, 
some of the TP) are easily distinguishable from the ones 
containing vegetable oils or long chain esters as excipients. 
This classification could also be achieved by submitting 
the spectra to a search in the FTIR library, illustrating 
one great advantage of FTIR over near infrared (NIR), 
for which spectral libraries are not always available. As 
these counterfeits can be detected by FTIR, they were not 
included in the modeled classes for the multivariate data 
analysis, and the PLS-DA was trained only with the OR 
ampoules and those in the TP group that clustered with 
them in the 2D score plot (Figure 4A). The other samples 
were used as a second test set to evaluate the efficiency of 
the PLS-DA method with unmodelled counterfeits.

Figure 3. Representative FTIR spectra of seized Durateston® ampoules. (A) OR (good matches for several vegetable oils); (B) TP (good matches for vegetable 
oils and esters); (C) BB (good match for benzyl benzoate and furfuryl benzoate); (D) TP-PR (match for propylene glycol). The arrow on (A) indicates the 
band characteristic of 4-en, 3-one steroids; arrow on (B) indicates the band characteristic of esters; arrow on (C) indicates the band characteristic of C−H 
aromatic bonds and the arrow on (D) the band characteristic of –OH groups.
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PLS-DA

PCA is an exploratory tool to detect tendencies in a 
group of samples, showing which characteristics can be 
used for class separation,19 and it was possible to visualize 
all subgroups in this study using this tool (Figure 4B). 
However, since forensic results demand a high level of 
statistical certainty to be issued, and to avoid the visual/
subjective interpretation of the PCA score plot, PLS-DA 
was used to develop a method that could be implemented 
as a routine analysis and yield results for which confidence 
limits could be estimated.

A PLS-DA model was constructed based on three latent 

variables (LV) to discriminate the OR ampoules (93 spectra; 
Table 1) from seized TP ampoules with vegetable oils or 
long-chain esters (21 spectra). Two-thirds of the spectra 
(62 OR and 14 TP) were used as a training subset and 
one-third (31 OR and 7 TP) as a test subset. Training and 
test subsets were selected randomly, making sure that both 
included ampoules from the two OR and TP subgroups 
(Figure 4B). If replicates from a single ampoule were 
available, all replicates were assigned to the same subset. 
As the model obtained was successful in discriminating all 
spectra of the test subset, another model was built using half 
the spectra as a training set, which was also successful in 
discriminating the other half of the spectra. Finally, a third 

Figure 4. 2D score plot (A) and 3D score plot (B) of the 178 FTIR spectra. BB = benzyl benzoate; OR = original, TP = testosterone propionate, 
TPePR = testosterone propionate and prasterone.
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model was built using one-third of the spectra as a training 
subset and two-thirds of the spectra as a test subset. This 
third model was also developed with three LV, explaining 
99.6% of the total variance, and it was also successful in 
discriminating all spectra in the test subset.

The analysis of the Hotelling T2 and residuals Q 
statistics showed that no outliers were present on the 
training or test subsets, since no samples presented 
simultaneously values of Hotelling T2 and residuals Q 
above the defined limits (Figure 5A). On the other hand, all 
samples of the second test subset (unmodelled counterfeit 
samples from the BB and TP-PR groups, as well as those 
from the TP groups whose main excipient was propylene 
glycol), were considered outliers (Hotteling T2 and residuals 
Q far above the threshold, Figure 5B). This result shows 
that the Hotelling T2 and residuals Q can identify samples 
belonging to classes not included in the training set and 

prevent discrimination errors for unmodelled classes. 
Recently, Rodionova et al.28 argued that PLS-DA or other 
discrimination models cannot be used for certification 
models due the risk of wrongly identify a sample belonging 
to an unmodelled class to the target/original class. However, 
the analysis of the Figure 5B shows that the Hotelling T2 
and residuals Q can prevent this kind of error.

The final model showed sensitivity and specificity 
equal to 100%, false positive and false negative rates equal 
to zero and efficiency rate equal to 100%, as illustrated in 
Figures 6 and 7. Regression coefficients of the PLS-DA 
model (SI, Figure S8) showed similar behavior when 
compared to the loadings plot for PC3 (SI, Figure S7), 
indicating that the most relevant regions for discrimination 
were between 1770 and 1600 cm-1, corresponding to the 
carbonyl groups of the esters and to the conjugated ketone 
of testosterone.

Figure 5. Dispersion plot of Hotelling T2 versus residuals Q statistics for (A) the training subset () and test subset (); and (B) training subset () 
and unmodelled counterfeits test subset (). Dashed lines indicate limit values for Hotelling T2 and residuals Q with 95% confidence for 3 PLS factors.

Figure 6. Class prediction plot of the PLS-DA model built to discriminate original (OR) and counterfeit (TP) ampoules. Estimated values for the training 
and test samples are shown in in blue () and red (), respectively. TP ampoules have values between −0.07 and 0.06, whereas OR ampoules have values 
between 0.95 and 1.03.

Figure 5. Dispersion plot of Hotelling T2 versus residuals Q statistics for (A) the training subset () and test subset (); and (B) training subset () 
and unmodelled counterfeits test subset (). Dashed lines indicate limit values for Hotelling T2 and residuals Q with 95% confidence for 3 PLS factors.

Figure 6. Class prediction plot of the PLS-DA model built to discriminate original (OR) and counterfeit (TP) ampoules. Estimated values for the training 
and test samples are shown in in blue () and red (), respectively. TP ampoules have values between −0.07 and 0.06, whereas OR ampoules have values 
between 0.95 and 1.03.
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Figure 7. Class values of the test subset for original (OR) and counterfeit (TP) ampoules. The discrimination threshold was defined as 0.5.

Values of RMSECV obtained for training and test 
sets were low and similar (0.020 and 0.026, respectively; 
Figure 6), indicating no overfitting of the model and a high 
discrimination capability. The variation of the estimated 
values for classes 0 (TP) and 1 (OR) in the training 
samples were −0.07 to 0.06, and 0.95 to 1.03, respectively 
(Figure 6), which indicate a high discrimination power 
between the classes. It is important to note that in 
PLS-DA, the discrimination threshold is more commonly 
determined by a Bayesian approach, which considers 
the distributions of the estimated class values of the 
training samples.23 For this particular application, as 
the variations for each class were extremely close, the 
Bayesian approach would result in a value very close to 
0.5, therefore this value was adopted and the application 
of the Bayesian approach was not necessary.

Class values and confidence limits obtained for the test 
set were lower than the defined threshold (Figure 7). Values 
obtained for OR test samples ranged from 0.95 to 1.06 
(maximum error 0.071) whereas values for TP test samples 
ranged from −0.20 to 0.15 (maximum error 0.218). There 
were no misclassifications and no unclassified samples 
(100% efficiency rate), confirming the applicability of the 
method in differentiating original from counterfeit samples 
of Durateston®.

A 100% efficiency rate was also achieved by 
Fernandes et al.16 for discriminating original and 
counterfeit glibenclamide tablets by NIR and fluorescence 
spectroscopy along with SIMCA, PLS-DA and 
unfolded PLS-DA. Sacré et al.13 achieved similar result 
by combining FTIR and NIR or FTIR and Raman 
spectroscopy associated with PLS analysis for Viagra-like 

and Cialis-like samples, respectively. For the same 
products, Custers et al.19 achieved a 90.5% performance 
when discriminating genuine and counterfeit samples 
using FTIR and SIMCA.

Conclusions

Anabolic steroids are a frequent target for medicine 
counterfeiting, and Durateston® is the most frequent steroid 
medicine counterfeited in Brazil. Crude counterfeits, 
when the main excipient is drastically altered, could be 
detected by a simple FTIR analysis and a library search. 
However, FTIR followed by PLS-DA has proven to be a 
suitable tool for discriminating original samples from more 
elaborate counterfeits. The proposed PLS-DA method 
successfully classified all samples of the test subset, with 
a 100% efficiency rate. It is a robust, cheaper and far less 
time-consuming alternative approach to the routine GC-MS 
analysis of suspect Durateston® samples, and can be easily 
implemented in all forensic laboratories from the BFP to 
standardize and improve Durateston® analysis.

Supplementary Information

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br as PDF file.
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